UNDRR
DesInventar Sendai
SENDAI FRAMEWORK
FOR DISASTER RISK REDUCTION
HOME
Analysis
Administration
Download
About
Get bookmark
English
Español
Português
Français
Armenian
Russian
Chinese
Arabic
Albanian
Bahasa
Farsi
Lao
Thai
Mongolian
Serbian
BHS
Montenegrin
Vietnamese
Profile
Query
View data
View map
Charts
Statistics
Reports
Thematic
Crosstab
English Data
Region:
Argentina
- [arg]
Profile:
Select what profile you want:
Disaster type
Multi-hazard profile
FLOOD
STORM
FIRE
SNOWSTORM
FORESTFIRE
STRUCTURE
POLLUTION
EPIDEMIC
DROUGHT
STRONGWIND
FOG
EXPLOSION
FROST
HAILSTORM
HEATWAVE
LEAK
RAIN
ALLUVION
EARTHQUAKE
PLAGUE
OTHER
ERUPTION
ACCIDENT
LANDSLIDE
ELECTRICSTORM
EPIZOOTIA
BIOLOGICAL
TORNADO
AVALANCHE
INTOXICACION
SURGE
COASTLINE
PANIC
SEDIMENTATION
Provincia
ALL
Antartida Argentina
Buenos Aires
Capital Federal
Catamarca
Chaco
Chubut
Cordoba
Corrientes
Entre Rios
Formosa
Jujuy
La Pampa
La Rioja
Mendoza
Misiones
Neuquen
Rio Negro
Salta
San Juan
San Luis
Santa Cruz
Santa Fe
Santiago del Estero
Tierra del Fuego
Tucuman
Argentina
Profile:
This Country Profile shows a set of typical results known as "Preliminary Analysis" comming from the disaster database. Charts, Maps and tables below will provide you with a basic understanding of the effects of many types of disasters occurred in the region.
Click here for more info
Composition of Disasters
Deaths
DataCards
Indirectly Affected + Directly affected
Houses Destroyed + Houses Damaged
Temporal Behaviour
Deaths
DataCards
Houses Destroyed , Houses Damaged
Indirectly Affected, Directly affected
>
Spatial Distribution
Deaths
DataCards
Houses Destroyed + Houses Damaged
Indirectly Affected + Directly affected
Statistics
Composition of Disasters
get it as Excel
Event
DataCards
Deaths
Injured
Missing
Houses
Destroyed
Houses
Damaged
Indirectly Affected
Directly affected
Relocated
Evacuated
Losses $USD
Losses $Local
Education centers
Hospitals
Damages in crops Ha.
Lost Cattle
Damages in roads Mts
ACCIDENT
118
219
745
20
71
30
1
ALLUVION
182
205
317
130
1862
566
114027
1947
16167
21074084
4
2
510
1840
6360
AVALANCHE
34
44
31
15
47
1800
3617
500
869
BIOLOGICAL
59
15
29000
450
5000
COASTLINE
4
600
1
DROUGHT
680
13
30
400
1380257
90378
200
1823564429
1
14794800
315280
EARTHQUAKE
158
99
418
9861
9674
200
7956
10697
22
8
ELECTRICSTORM
65
104
88
1
2
162500
1
1
7
EPIDEMIC
699
942
254600
101
22042
1150
53475935
28
3
EPIZOOTIA
62
3320
232512000
5755
ERUPTION
85
1515680
10085
3350000
1000000000
1002000
EXPLOSION
415
459
1969
44
129
578
222363
3210
20034
160558037
12
7
266
4
FIRE
2136
1085
4123
15
3548
601
3413749
12003
70
29369
473758383
53
31
30131
2
FLOOD
6997
778
6918
235
18687
591170
8678682
627237
419
1950678
5507829260
6373930000
979
64
66356979
2987542
11683750
FOG
508
160
287
24
1
749
FORESTFIRE
967
104
1527
84
110
194
9970
694
20469
165817927
2215
17
11243245
64388
24000
FROST
370
316
7
75
108712
131260
510
438200000
364
566950
HAILSTORM
372
9
538
1265
13423
170580
5096
1837
211669239
3
56287
HEATWAVE
275
14
1936
2025150
INTOXICACION
14
18
207
21
1
LANDSLIDE
81
31
67
1
53
21
3780
688
766
4
1
22055
LEAK
262
396
452
1
93
4817
300
17033
9
1
17
3500
OTHER
125
17
873
1
1783522
1492000000
11003495
PANIC
3
1
96
1000
PLAGUE
154
18
748
34800
900
3340
3
291007
6301
POLLUTION
746
585
24288
4284
14227838
17362
1200
8578
5200000
17
16
88633
2
34100
RAIN
192
50
221
256
35
690500
1001
8327
126
19
200000
SEDIMENTATION
2
400
SNOWSTORM
981
116
277
234
163
5400
423752
35433
8694
28640000
87
1
1200000
2618070
330000
STORM
3117
489
4647
50
16380
34075
7047830
78940
197800
4062804983
280
30
3042150
1050
32000
STRONGWIND
626
198
1975
58
4091
3843
756146
17499
10311
434664816
7500000
34
9
635400
300
STRUCTURE
945
256
1052
7
62
86
17571270
28043
100
1367
11000
901
13
25055
1002000
SURGE
6
1
2
15
1
60
TORNADO
54
31
235
1018
465
493400
3532
350
554
109
Spatial Distribution
get it as Excel
Geography
Code
DataCards
Deaths
Injured
Missing
Houses
Destroyed
Houses
Damaged
Indirectly Affected
Directly affected
Relocated
Evacuated
Losses $USD
Losses $Local
Education centers
Hospitals
Damages in crops Ha.
Lost Cattle
Damages in roads Mts
Antartida Argentina
96
6
1
18
17
1
Buenos Aires
06
6132
2225
171329
140
14262
45187
17809102
408029
1255
755277
1486971892
6373900000
1445
61
43694749
1100153
9784000
Capital Federal
02
3440
785
31934
14
2159
1174
15352381
59311
145
25429
77692557
30000
2485
50
18835
1006500
Catamarca
10
345
111
9288
18
2028
217
257130
839
6486
900839
5
3
63110
8500
10060
Chaco
22
617
127
15965
62
1860
504956
1917521
140720
100
205597
402500000
92
4
5750374
648000
1507500
Chubut
26
563
188
548
119
69
2259
1730296
2057
10327
119521
1000000000
6
1
1166130
1250000
9000
Cordoba
14
1363
536
7424
111
1049
6691
7960087
10126
62451
1886132327
17
7
4401234
101
53750
Corrientes
18
480
107
1119
4
1591
4307
172684
21133
200
112434
376765095
6
5
767930
130346
Entre Rios
30
551
99
3040
1
924
6280
357739
26068
197822
76427027
57
3
8727545
575409
50520
Formosa
34
593
69
502
2
5381
11748
250277
15608
350
246131
78240878
75
3
5008600
481380
20000
Jujuy
38
316
277
2676
109
1072
1037
210749
7272
26336
4901813607
37
3
8016530
1580
La Pampa
42
402
52
1946
55
512
86600
1043
200
1831
1487645362
7500000
16
10788588
36238
11200
La Rioja
46
196
45
2045
1
354
340
8372
2115
3680
21540080
10
3
72640
123000
150
Mendoza
50
971
218
3826
26
7292
19737
1999508
23862
23389
255973043
175
10
911625
36950
177560
Misiones
54
314
127
1767
11
4941
4429
653911
95828
53635
3608521
2
20
4255
50000
Neuquen
58
536
168
862
67
1397
950
245170
6129
28182
411448607
5
5
90949
11960
540
Rio Negro
62
594
171
938
6
233
6020
554548
23274
31168
117028060
193
1
472536
1062940
600
Salta
66
605
209
10973
30
1051
532
616818
40261
34377
8620040
11
3
36697
1810
2159
San Juan
70
261
123
4952
100
3959
105
1562
5391
11049
9
4
910
17700
5500
San Luis
74
207
47
3819
13
144
50
778
450
5081
2
3
1549790
6000
Santa Cruz
78
170
90
264
7
4
110
28654
2466
1268
18300000
2
1217605
1000000
190000
Santa Fe
82
1885
739
21909
34
6836
40563
9774393
151371
89
353754
3472311615
404
13
15628269
212200
231200
Santiago del Estero
86
425
114
3585
17
467
2716
152535
13477
78853
300
82
2
1074600
1100
Tierra del Fuego
94
80
18
3798
12
202
200
124036
1030
1192
1
1
27575
300000
Tucuman
90
442
113
4178
15
804
6767
631571
10604
38456
31094188
7
1
43848
30150
Temporal Behaviour
get it as Excel
Year
DataCards
Deaths
Injured
Missing
Houses
Destroyed
Houses
Damaged
Indirectly Affected
Directly affected
Relocated
Evacuated
Losses $USD
Losses $Local
Education centers
Hospitals
Damages in crops Ha.
Lost Cattle
Damages in roads Mts
1970
915
446
12056
4
1047
598
20548
11287
7344
51926016
16
9
606398
11
16000
1971
327
39
205
5
187
210
600
2852
9456
10075400
2
3
66023
50
1972
590
96
1473
13
1332
1881
10222
13746
44370
7
2
388024
17400
22500
1973
918
404
3415
44
2046
9772
47412
9116
55756
1757868911
33
8
5797714
410062
4518625
1974
460
228
885
69
797
693
66300
27006
100
61273
190401637
10
4
1700100
7078
1333000
1975
382
140
495
34
1553
350
2997
18504
7500000
8
2
1290400
300
75000
1976
268
72
14243
16
184
242
1227
373
10696
1800000
2
6
12153
38000
1977
507
183
790
9
3934
3439
10461
12884
42442
52
7
525106
39600
180
1978
215
49
183
1
140
2948
23258
4400090
4
117900
41000
1979
484
76
629
2
266
991
7668
2662
26888
500000
20
705355
550
189350
1980
421
144
1749
127
606
10226
404917
935
121038
119265764
6
5
1642827
54500
1981
885
167
2283
47
103
393
77020
1043
89
34112
4043598538
11
5
2276289
3651
8150
1982
399
42
148
1110
369
21763
45700
146966
11000000
67
3
1141190
456000
1983
424
63
787
4
6484
924
9589
153573
124
49
3
3899800
410080
1984
548
180
8723
122
6416
485
97701
2
88172
18040000
76
1
4994306
2707100
7500
1985
469
126
2193
14
7114
10851
462483
80231
207678
186692355
37
10
11351820
50002
1986
557
110
663
11
805
3152
207752
107771
15000000
6
6577190
153220
1987
539
124
2285
1
265
85
636195
30883
581807
5
88681
2
1988
208
58
4420
92
607
445
99700
450
74487
79024106
6
4
1712285
50
1989
241
28
977
1
103
110
4108064
1311
22953
435740878
3
11
169532
160000
2500
1990
240
42
1353
5
902
1
1420416
12500
19586
2000000
9
81340
2200
1991
261
123
4590
2
50
1702
1028540
6827
90800007
1735050
500000
1992
365
148
1757
65
479
8724
2188075
1075
118369
461050030
12
9
6624589
546000
180000
1993
370
127
3884
8
1662
2293
2977344
34782
44231
307643421
40
7
3567228
479000
5149600
1994
203
36
552
1
52
7089
1667664
172
5612
69000000
16
7
1187000
4900
1995
137
46
712
20
52
967
2422080
63510
25660
501020000
6
3
1579669
420000
192900
1996
138
47
2083
10
7
2505
563230
1260
3104
74200000
109
2
104450
3500
1997
357
53
12446
11
1157
7192
2159797
11200
32959
12500126
1
3
985712
1140
700
1998
547
212
53856
18
2172
5158
1143634
88083
30
83249
1948500000
53
1
11974011
214100
333604
1999
346
35
451
4
101
1055
975139
300
5433
267300200
12
1
152332
14900
36000
2000
693
143
1775
22
2107
4538
5956596
6080
118803
499550300
99
3
2068553
6455
1060
2001
540
278
3422
29
3631
2531
1890383
19706
55888
12012054
14
1
5045830
2650
2002
533
154
7909
14
413
3636
1280753
11168
42812
858051
31
4
5910941
40000
900000
2003
503
235
8881
10
3338
29670
5945087
102151
119450
2900000035
196
8
129719
5400
2004
473
314
8599
11
1627
831
1142960
9507
5910
10
5
5017055
1800
2005
607
188
2403
3
128
841
6984852
6225
11104
54400000
30
16
4545991
4000
2000
2006
612
121
23083
4
97
5924
3540128
3479
1200
16634
90000002
690
2
2019415
2007
1163
370
72281
7
656
13665
1903939
206402
325
76544
8263390
816
15
1800140
141080
140160
2008
1055
228
2409
12
52
1195
3064572
52528
100
20502
4001000
212000000
2268
9
183847
21300
10040
2009
613
407
32043
6
970
1434
256147
44075
45
31039
95618792
7500000
35
2
1709640
1500
10000
2010
284
165
2208
10
810
12727
1228000
3334
450
6854
4400
5000
2011
208
72
435
2
17
32
1514165
4
11170
1000000000
7200
2000
2012
411
70
177
1302
374
645108
511
11545
780000000
160830000
289
4413690
47000
300
2013
426
209
2030
1
19
500469
1346763
165077
17597
3000000
6000000000
5
330258
2014
214
74
386
18
979
4435
75490
6745
69507
525
4
1299170
6
2015
438
86
360
10
256
2683
1285956
3064
66196
1100000
5
1994603
4000
Argentina
Summary:
DataCards: 21494
Period:
1970 - 2015
Highest Mortality:
FIRE: 1085 Deaths; 2136 DataCards
EPIDEMIC: 942 Deaths; 699 DataCards
FLOOD: 778 Deaths; 6997 DataCards
Highest Housing Damages:
FLOOD: 609857 Houses; 6997 DataCards
STORM: 50455 Houses; 3117 DataCards
EARTHQUAKE: 19535 Houses; 158 DataCards