Select what profile you want:
|
Lebanon
Profile:
This Country Profile shows a set of typical results known as "Preliminary Analysis" comming from the disaster database. Charts, Maps and tables below will provide you with a basic understanding of the effects of many types of disasters occurred in the region. Click here for more info
Composition of Disasters
Deaths
|
DataCards
|
Indirectly Affected + Directly affected
|
Houses Destroyed + Houses Damaged
|
Temporal Behaviour
Deaths
|
DataCards
|
Houses Destroyed , Houses Damaged
|
Indirectly Affected, Directly affected >
|
Spatial Distribution
Houses Destroyed + Houses Damaged
|
Indirectly Affected + Directly affected
|
|
Statistics
|
Composition of Disasters
get it as Excel
|
Event | DataCards |
Deaths | Injured |
Missing | Houses Destroyed |
Houses Damaged |
Indirectly Affected |
Directly affected |
Relocated |
Evacuated |
Losses $USD |
Losses $Local |
Education centers |
Hospitals |
Damages in crops Ha. |
Lost Cattle |
Damages in roads Mts |
Avalanche | 4 | 1 | | | | 1 | | | | | | 200000 | | | | | |
Cold Wave | 5 | 15 | 2 | | | | | | | | | | | | | | |
Earthquake | 36 | | 12 | | 8 | 26 | 2664 | | | | | | 1 | | | | |
Erosion | 95 | | 1 | | 12 | 23 | 1501 | | | 13 | 32000 | 100000000 | | | 4162 | 730 | |
Explosion | 1 | 215 | 6500 | | 2850 | 73000 | | | | | | | | 6 | | | |
Flash Flood | 118 | 1 | 4 | | 11 | 54 | 13 | 6 | 50 | 126 | | 20000 | 2 | 1 | 150 | | |
Flood | 91 | 2 | 2 | | | 16 | 177 | 2 | | 51 | | 2000000 | | | 608 | 502 | |
Forest Fire | 1274 | 6 | 676 | | | 64 | 217 | 2 | | | 500000 | 6879320000 | | | 10323 | 140 | 1 |
Freezing Rain | 2 | 1 | 1 | | | | 3 | | | | | | | | | | |
Hail | 2 | | | | | | | | | | | 200000000 | | | | | |
Heavy Rain | 51 | | 14 | | 5 | 8 | 9 | | | 23 | | 30000000 | | | 1000 | | |
Heavy Wind | 8 | | 1 | | | | | | | | | | | | | | |
High Waves | 2 | | | | | | | | | 6 | | | | | | | |
Hurricane | 1 | | | | | | | | | | | | | | | | |
Landslide | 76 | 4 | 21 | | 31 | 17 | 3645 | | | 37 | 300000 | 601000000 | 2 | | | | |
Lightning | 1 | | | | | | 5 | | | | | | | | | | |
Montagne Wave | 2 | | 17 | | | | 136 | | | | | | | | 200 | | |
Rain | 15 | 1 | 3 | | | 3 | | | | | | | | | 250 | | |
River Flood | 43 | 17 | 3 | | 10 | 57 | | 1 | | 50 | 1000000 | 1000000000 | | | 204 | | |
Sandstorm | 16 | | 19 | | | | | | | 5 | | | 1 | | 50 | | |
Sand Storm | 1 | | | | | | | | | | | | | | | | |
Slippery Road | 12 | 9 | 81 | | | | 47 | | | | | | | | | | |
Snowstorm | 13 | 1 | 3 | | 2 | 1 | 1000 | | 30000 | 604 | | | | | | | |
Snow Storm | 89 | 6 | 15 | 4 | 1 | 1 | 1184 | 1 | | 1269 | | | 4 | | | | |
Storm | 64 | 4 | 10 | 4 | | 15 | 2002 | 1 | | 120 | | 200250000 | | | 170 | 270 | |
Thunderstorm | 9 | 1 | | | 1 | 1 | | | | | | | | | | 100 | |
Torrent | 39 | 2 | 1 | | 26 | 286 | | | | | 4452 | 774055000 | | 1 | 224 | 140 | 2000 |
Windstorm | 10 | 3 | | 1 | | 1 | | | | | | | 1 | 1 | | | |
Wind Storm | 18 | | 1 | | | | | | | | | | | | 1 | | |
Winter Storm | 316 | 92 | 53 | 30 | 48 | 808 | 550896 | | 3172 | 3363 | 7276200 | 1511700000 | | | 480 | 3185 | |
|
Spatial Distribution
get it as Excel
|
Geography |
Code |
DataCards |
Deaths | Injured |
Missing | Houses Destroyed |
Houses Damaged |
Indirectly Affected |
Directly affected |
Relocated |
Evacuated |
Losses $USD |
Losses $Local |
Education centers |
Hospitals |
Damages in crops Ha. |
Lost Cattle |
Damages in roads Mts |
Akkar | 01 | 316 | 37 | 77 | 4 | 26 | 201 | 198372 | 2 | | 1322 | 301200 | 972500000 | | | 6737 | 802 | 1 |
Baalbek_Hermel | 02 | 143 | 27 | 13 | | 46 | 512 | 7209 | 1 | 30000 | 125 | 4452 | 2466030000 | | 2 | 603 | 255 | |
Békaa | 04 | 134 | 26 | 30 | 8 | 6 | 476 | 2311 | 1 | 80 | 918 | | 463075000 | | 1 | 4614 | 170 | |
Beyrouth | 03 | 76 | 219 | 6522 | 1 | 2854 | 73005 | 146 | | | 13 | | | | 6 | 150 | | |
Mont Liban | 05 | 710 | 55 | 312 | 21 | 37 | 42 | 3846 | 2 | 142 | 2308 | 1282000 | 1556500000 | 6 | | 2581 | 640 | |
Nabatiyé | 06 | 324 | 4 | 45 | 1 | 3 | 62 | 42716 | 5 | | 51 | 500000 | 1380020000 | 1 | | 866 | | |
Nord | 07 | 378 | 9 | 55 | 4 | 13 | 14 | 303571 | 1 | | 921 | 7000000 | 3785200000 | 3 | | 822 | 200 | 0 |
Sud | 08 | 331 | 4 | 386 | | 20 | 70 | 5328 | 1 | 3000 | 9 | 25000 | 675220000 | 1 | | 1449 | 3000 | 2000 |
| | 2 | | | | | | | | | | | | | | | | |
|
Temporal Behaviour
get it as Excel
|
Year | DataCards |
Deaths | Injured |
Missing | Houses Destroyed |
Houses Damaged |
Indirectly Affected |
Directly affected |
Relocated |
Evacuated |
Losses $USD |
Losses $Local |
Education centers |
Hospitals |
Damages in crops Ha. |
Lost Cattle |
Damages in roads Mts |
1980 | 37 | 4 | 4 | 2 | 1 | 11 | | | | 10 | | 500000 | 2 | | 1 | 15 | |
1981 | 16 | 3 | 2 | | | | 60 | | | 275 | | | | | | | |
1982 | 13 | | | | | | 1000 | | | | | 8000000 | | 1 | | | |
1983 | 27 | 45 | | 17 | | 11 | | | 142 | 952 | | 603400000 | 1 | | | 3000 | |
1984 | 22 | | | | | 3 | 160 | | | 22 | | 320000 | | | 206 | | |
1985 | 18 | | | | 1 | | | | | | | 2000000 | | | | 500 | |
1986 | 28 | | | 3 | | | | | | 50 | | 1000000 | | | | 140 | |
1987 | 54 | 1 | 1 | 4 | 36 | 279 | 33 | 2 | 50 | 60 | 4452 | 399055000 | | 1 | 254 | 140 | |
1988 | 16 | | | | | | | | | | | 100000000 | | | 25 | 700 | |
1989 | 5 | | | | | | | | | | | 100000000 | | | | | |
1990 | 28 | 1 | | | | | | | | 7 | | 150000000 | | | 5 | | |
1991 | 80 | 3 | 6 | | 4 | 21 | 128 | | | 124 | | | | | 2 | | |
1992 | 80 | 45 | 44 | 13 | 15 | 17 | 506020 | | 3000 | 1037 | | 250000 | | | 804 | 40 | |
1993 | 31 | | | | | | | | | | | | | | 5 | | |
1994 | 56 | | | | 2 | 8 | 2000 | 5 | | 9 | | 200020000 | | | 319 | 32 | |
1995 | 68 | | | | | | 3 | 1 | | | | 2715000000 | | | 199 | | |
1996 | 59 | 1 | 14 | | | 12 | 100 | | | | | 90000000 | | | 130 | | |
1997 | 77 | 4 | 26 | | 9 | 26 | 142 | | | 13 | | 825000000 | 1 | | 100 | | 2000 |
1998 | 193 | | 19 | | 10 | 38 | | | | 5 | | 963000000 | 1 | | 1471 | | 1 |
1999 | 79 | 1 | 62 | | 10 | 151 | 51 | | | 10 | | 876000000 | 1 | | 703 | | |
2000 | 106 | 1 | 33 | | | 8 | 42099 | | | 92 | | 964000000 | | | 110 | | |
2001 | 161 | 8 | 13 | | | 117 | 3512 | | | 1157 | 5275000 | 1200000000 | | | 527 | | |
2002 | 217 | | 7 | | 20 | 146 | 736 | | | 815 | 2000000 | 1001000000 | | | 714 | | |
2003 | 121 | 2 | 35 | | 15 | 438 | 3207 | | 30 | 104 | 333200 | | | 1 | 4152 | 30 | |
2004 | 102 | 3 | 6 | | 15 | 30 | | 1 | | 61 | 1000000 | 1100000000 | 1 | | 5204 | 170 | |
2005 | 49 | 1 | | | 1 | | | 2 | | 108 | | | 2 | | 26 | | |
2006 | 90 | 5 | 1 | | | | 2 | 2 | | | | | 1 | | 350 | 200 | |
2007 | 129 | | 57 | | | 1 | | | | | 500000 | | 1 | | 373 | | |
2008 | 108 | 4 | 457 | | 1 | 1 | 2664 | | | | | | | | 262 | | |
2009 | 141 | | 3 | | 2 | 14 | | | | | | | | | 686 | 100 | |
2010 | 26 | | | | | | | | | | | | | | | | |
2011 | 9 | | | | | | | | | | | | | | | | |
2012 | 49 | 1 | 1 | | | 20 | | | | | | | | | 210 | | |
2013 | 34 | 13 | 3 | | 3 | 4 | | | 30000 | | | | | | 400 | | |
2014 | 10 | | 16 | | | | 1000 | | | 72 | | | | | 200 | | |
2015 | 4 | 11 | | | | | | | | | | | | | | | |
2016 | 6 | 1 | 23 | | | | | | | 30 | | | | | | | |
2017 | 6 | | 4 | | | | | | | | | | | | 32 | | |
2018 | 23 | 3 | | | 10 | 26 | | | | 50 | | | | | 231 | | |
2019 | 9 | 4 | 103 | | | | | | | 604 | | | | | | | |
2020 | 12 | 216 | 6500 | | 2850 | 73000 | | | | | | | | 6 | 43 | | |
2021 | 15 | | | | | | 582 | | | | | | | | 77 | | |
|
|
Summary: DataCards: 2414 Period:1980 - 2021
Highest Mortality: Explosion: 215 Deaths; 1 DataCards Winter Storm: 92 Deaths; 316 DataCards River Flood: 17 Deaths; 43 DataCards Highest Housing Damages: Explosion: 75850 Houses; 1 DataCards Winter Storm: 856 Houses; 316 DataCards Torrent: 312 Houses; 39 DataCards |
|